
Mathematical
Inequalities

& Applications

Volume 17, Number 4 (2014), 1515–1527 doi:10.7153/mia-17-111

BEST EXPONENTS IN MARKOV’S INEQUALITIES

ALEXANDER GONCHAROV

(Communicated by Z. Ditzian)

Abstract. By means of weakly equilibrium Cantor-type sets, solutions of two problems related
to polynomial inequalities are presented: the problem by M. Baran et al. about a compact set
K ⊂ C such that the Markov inequality is not valid on K with the best Markov’s exponent, and
the problem by L. Frerick et al. concerning compact sets satisfying the local form of Markov’s
inequality with a given exponent, but not satisfying the global version of Markov’s inequality
with the same parameter.

1. Two versions of Markov’s inequality

The classical Markov inequality |P′| [−1,1] � (degP)2 |P| [−1,1] can be generalized
in different ways. We consider two versions that are the most important for applications.

Let Pn denote the set of all holomorphic polynomials of degree at most n. For any
infinite compact set K ⊂ C we consider the sequence of Markov’s factors Mn(K) =
inf{M : |P′|K � M |P|K , P ∈ Pn} for n ∈ N. Here and in what follows, | · |K denotes
the uniform norm on K.

We see that Mn(K) is the norm of the operator of differentiation in the space
(Pn, | · |K).

In the case of a polynomial growth rate of Markov’s factors, we denote K ∈MI(m)
if there is a constant C such that Mn(K) � Cnm for all n . Then the infimum m(K) of
all m > 0 such that this inequality is valid for some C is called ([2, p. 2786]) the best
Markov’s exponent of K .

We say that the (global) Markov inequality is valid on K (or K has Markov’s
property) if K ∈ MI(m) for some m. Then we write K ∈ MI.

If a compact set K has Markov’s property, then the Markov inequality is not nec-
essarily valid on K with the best Markov’s exponent. An example of such compact set
in the form of a cusp in CN for N � 2 was presented by M. Baran, L. Białas-Cież, and
B. Milowka in [3, p. 643]. The authors posed the question
[3, p. 638]: is the same true in C?

PROBLEM 1. Give an example of K ⊂ C such that the Markov inequality with
the exponent m(K) is not valid on K .

In the case of non-polar K, the knowledge about a character of smoothness of the
corresponding Green function may help to estimate Mn(K) from above. Let K̂ denote
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the polynomial hull of K and gC\K be the Green function of C\ K̂ with pole at infinity
(see e.g. [17, p. 108]). If K is regular with respect to the Dirichlet problem then the
function gC\K is continuous throughout C and we extend it to be zero on K̂ . The
application of the Cauchy formula for P′ and the Bernstein-Walsh inequality yields the
estimate

Mn(K) � inf
δ

δ−1 exp[n ·ω(δ )], (1)

where ω(·) denotes the modulus of continuity of gC\K .
This gives an effective bound of Mn(K) for the cases of temperate growth of ω(·).

For instance, the Hölder continuity of gC\K , which means the existence of constants
C,α :

gC\K(z) � C (dist(z,K))α for all z ∈ C

(then we write gC\K ∈ Lip α ) implies K ∈ MI(1/α). Indeed, given n ∈ N, the value

δ = n−1/α in (1) gives the result.
In particular, the global Markov inequality is valid on uniformly perfect sets, since

the Green function for any uniformly perfect set is Hölder continuous (see e.g. [6, p.
65]). Recall that a compact set K is uniformly perfect if it has at least two points and
the moduli of annuli in the complement of K which separate K are bounded.

Markov’s property is closely related to problems of polynomial approximation and
extension of C∞ functions. W. Pleśniak in [15, T.3.3, p. 111] presented an extension
operator for the space E (K) of Whitney functions on K with Markov’s property. This
operator is continuous in so-called Jackson topology, which is equivalent to the natural
topology of E (K) if and only if the compact set K satisfies the Markov property. It
should be noted that such operator was introduced in [14, p. 285] for a more special
family of uniformly polynomially cuspidal compact subsets of Rn.

However, there are sets K without Markov’s property, but such that the spaces
E (K) admit the extension operator ([8, p. 31], [9, p. 167], [1, T. 1, p. 38]).

Not only the global version of Markov’s inequality, but also its local version is
related to the extension problem ([11], [5], [7]).

We say that the local Markov inequality with parameter m is valid on K ⊂ C (we
write K ∈ LMI(m)) if there exist constants (Cn)∞

n=1 with Cn � 1 such that for each
P ∈ Pn, each ε ∈ (0,1], and each z ∈ K we have

|P′(z)| � Cn ε−m |P|K∩B(z,ε).

Here, B(z,ε) is the closed ball of radius ε centered at z.
Naturally, we write K ∈ LMI if K ∈ LMI(m) for some m .
Some authors (cf. [5], p. 854) call the inequality above the weak local Markov

inequality, whereas LMI in [13, p. 203] is LMI(1) in our notations. We follow here [7,
p. 592], where L. Frerick, E. Jordá, and J. Wengenroth presented a linear tame extension
operator for the Whitney space E (K), provided K ∈ LMI(m) for some m . In particular
L. Frerick et al. posed in [7, p. 602]:

PROBLEM 2. Present K ∈ LMI(m), not satisfying the global version of Markov’s
inequality with the same m .
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We can answer both questions by means of so-called weakly equilibrium Cantor
sets.

For basic definitions and facts of Logarithmic Potential Theory see e.g. [16] and
[17], log denotes the natural logarithm.

2. Weakly equilibrium Cantor sets

For the convenience of the reader we repeat the relevant material from [10], thus
making our exposition self-contained. Given sequence γ = (γs)∞

s=1 with 0 < γs < 1/4,
we define a sequence of real polynomials

P2(x) = x(x−1) and P2s+1 = P2s(P2s + rs)

for s ∈ N with r0 = 1 and rs = γs r2
s−1 for s � 1. We consider

Es := {x ∈ R : P2s+1(x) � 0} = ∪2s

j=1I j,s.

The closed basic intervals I j,s of the s-th level are disjoint and Es+1 ⊂ Es. This gives
a Cantor type set K(γ) := ∩∞

s=0Es.
The sequence of level domains Ds = {z ∈ C : |P2s(z)+ rs/2| < rs/2}, s ∈ N, is

a nested family: Ds ↘ K(γ). Consequently, for the corresponding Robin constants we
have Rob(Ds) = 2−s log 2

rs
↗ Rob(K(γ)). Thus the set K(γ) is polar if and only if

lims→∞ 2−s log 2
rs

= ∞. If this limit is finite and z /∈ K(γ) , then

gC\K(γ)(z) = lim
s→∞

2−s log |P2s(z)/rs|.

Let δs = γ1γ2 · · ·γs, so r1r2 · · ·rs−1 δs = rs . Since |P′
2s(0)| = rs/δs and |P2s +

rs/2|K(γ) = rs/2, we get for s ∈ N

M2s(K(γ)) � 2/δs. (2)

In what follows we will consider only K(γ) satisfying the assumption

γs � 1/32 for s ∈ N, (3)

which provides some additional properties of the sets. In particular, they are weakly
equilibrium in the following sense.

Let us uniformly distribute the mass 2−s on each I j,s for 1 � j � 2s. We denote
by λs the normalized in this sense Lebesgue measure on the set Es . If the set K(γ) is
not polar, then λs converges in the weak∗ topology to the equilibrium measure of the
set K(γ).

The lengths l j,s of the intervals I j,s of the s-th level are not the same, but we can
estimate them in terms of the parameter δs ([10], (9) and L.6):

δs < l1,s < 2δs, δs < l j,s < δs · exp(16
s

∑
k=1

γk) for 2 � j � 2s. (4)
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If Ii,s ⊂ I j,s−1 then ([10], Cor.2)

1
2

γs l j,s−1 < li,s < 4γs l j,s−1. (5)

If the set K(γ) is not polar, then we can characterize smoothness of gC\K(γ)

in terms of the parameter ρs = ∑∞
k=s+1 2−k log 1

2γk
. It has potential theory meaning:

ρs = Rob(K(γ))−Rob(Ds), so it shows how rapidly the minimal energy for the set Ds

approximates the energy corresponding to μK(γ) . By T. 5 in [10],

ρs +2−s log
δ
δs

< ω(gC\K(γ),δ ) < ρs +2−s log
16δ
δs

(6)

for δs � δ < δs−1 . This and (1) provide

EXAMPLE 1. ([10], Ex. 6) Given m0 � 5, let γs = 2−m0 for all s . Then m(K(γ))=
m0.

In view of the possibility to represent K(γ) in terms of a controllable sequence of
polynomials, these sets are highly suitable for applications to polynomial inequalities.

3. Markov’s exponents for K(γ)

In the synthesis of Example 1, we estimate m(K(γ)) for the general case.

LEMMA 1. Let (xk)∞
k=1 be a sequence of real numbers. Suppose x1 + x2 + · · ·+

xn �C0 with some constant C0 for all n . Then for C1 =C0 eC0 +e−1 we have for all n

ex1+x2+···+xn
(
xn+1 +

1
2
xn+2 + · · ·+ 1

2k−1 xn+k + · · ·
)

� C1.

Proof. Given fixed n , let tn = x1 + x2 + · · ·+ xn. Then tn etn � −e−1. By as-
sumption, 2−i(xn+1 + · · ·+ xn+i) � 2−i(C0 − tn). Summing these inequalities for i =
1,2, · · · ,k−1,k,k we get etn(xn+1 + 1

2xn+2 + · · ·+ 1
2k−1 xn+k) � etn(C0− tn) �C1, which

is the desired conclusion. �

THEOREM 1. For the set K(γ) with (3) and m ∈ R , m � 5 the following state-
ments are equivalent.

(i) gC\K(γ) ∈ Lip 1
m .

(ii) K(γ) ∈ MI(m).
(iii) There exists a constant C such that C ·δs � 2−ms for all s ∈ N.
Thus, m(K(γ)) = inf{m : sups(log2 1/δs−ms) < ∞}.

Proof. The implication (i) ⇒ (ii) follows (1) and the next argument.
From (2) we have the implication (ii) ⇒ (iii).
Let us show that (iii) implies (i). The set K(γ) , provided (iii), is not polar. In-

deed, 1/γk = δk−1/δk � C2(m−5)k+5, by (3) and (iii). Therefore the series that repre-
sents ρs converges, Rob(K(γ)) < ∞, and we can use (6).
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Suppose δs � δ < δs−1 . We proceed to show that ρs � C1 δ 1/m
s for some con-

stant C1. By the substitution γk = 2−m e−mxk we reduce the proof of this inequality to
Lemma 1. Here, δs = 2−ms e−m(x1+x2+···+xs) and (iii) provides x1 +x2 + · · ·+xs �C0 =
1
m logC. On the other hand, log 1

2γk
= (m−1) log2+mxk, so ρs = (m−1)2−s log2+

m2−s−1(xs+1 + 1
2xs+2 + · · ·). Lemma 1 now yields the desired inequality.

It remains to prove that 2−s log 16δ
δs

�C2 δ 1/m for some constant C2. Fix β ∈ (0,1]

such that δ = δ β
s δ 1−β

s−1 . Then δ = δs T with T = (1/γs)1−β � 1.
Applying (iii) we reduce the required inequality to the evident form

2−s log16+2−s logT � C2C−1/m 2−s T 1/m.

By (6), ω(gC\K(γ),δ ) < (C1 +C2)δ 1/m and gC\K(γ) ∈ Lip 1
m . �

EXAMPLE 2. (to Problem 1) For each m0 � 5 there exists K(γ) with m(K(γ)) =
m0 such that K(γ) /∈ MI(m0).

Indeed, let Nk ↗ ∞ with N0 = 0,Nk = o(k) (for example Nk =
√

k ). Take γk =
2−m0−Nk+Nk−1 . Then δs = 2−s·m0−Ns . Here the condition ∃C : C ·δs � 2−ms, ∀s is valid
for each m > m0 but is not valid for m = m0.

COROLLARY 1. (Compare to T. 3 in [19, p. 721]) The following are equivalent.
(I) gC\K(γ) is Hölder continuous.
(II) K(γ) has Markov’s property.
(III) There exists a > 0 such that δs � as for all s ∈ N.

The condition (iii) of Theorem 1 does not imply that K(γ) is uniformly perfect.
By Theorem 3 in [10], the set K(γ) is uniformly perfect if and only if infs γs > 0.
Let us construct Markov’s set K(γ) even though it is not α -perfect for any α given
beforehand.

4. α -perfect sets

Given α � 1, a compact set K ⊂ C is a perfect set of the class α ([18, p. 74])
if there are constants C � 1,δ > 0 such that for any y ∈ K one can find a sequence
(x j)∞

j=1 ⊂ K such that |y− x j | ↓ 0, |y− x1 | � δ and C · |y− x j+1 | � |y− x j |α for any
j ∈ N. In this case we will write K ∈ (α) .

Thus, K ∈ (1) means that K is uniformly perfect.
If K ∈ MI(m) then K is α -perfect for α > 2m. This was proved by Jonsson in

[12, T. 3, p. 96].
On the other hand, in unpublished preprint by B.Uzun and the author the following

examples were suggested: K1 ∈ (α) for any α > 1 without Markov’s property, and,
given α, the set K2 /∈ (α) with Markov’s property. For the convenience of the reader
we repeat these examples here and, then, will give their Cantor versions.

EXAMPLE 3. Let K1 = {0}∪∪∞
k=2Ik, where Ik = [ak,bk] = [ck −δk,ck +δk] with

bk = 1
k! , ak = bk −bk+1. Clearly, K1 is α -perfect set for any α > 1. We claim that K1

does not satisfy the Markov property.
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We use the Chebyshev polynomials TN(x) = cos(N ·arccosx) for |x|� 1, N ∈Z+.
Given k, let TNk denote the Chebyshev polynomial corresponding to the interval Ik,
that is TNk(x) = TN( x−ck

δk
). The well-known representation TN(x) = 1

2 [(x+
√

x2−1)N +

(x−√
x2−1)N ] for |x| > 1 implies

(Δ/δk)N < |TNk(ck ±Δ)| < (2Δ/δk)N for Δ > δk. (7)

For fixed large n, let us consider the polynomial P(x) = x ·∏n
k=2 βkTNkk(x), with

βk = T−1
Nkk

(0). We say that P is a “nearly Chebyshev” polynomial for K1, if degrees
(Nk)n

k=2 are chosen in a such way that the maximal values of |P| on the intervals (Ik)n
k=2

are approximately the same. It is difficult to find the best possible values of these
degrees. For our aim it is enough to take Nk = [logn−k n], where [a] denotes the greatest
integer in a .

Clearly, degP < logn n and P′(0) = 1. We will show that for each x ∈ K1

|P(x)| � bn. (8)

It will follow the absence of Markov’s property of K1, since n! � C · (logn)n·m is a
contradiction for fixed C,m and n → ∞.

Let us fix x ∈ K1. If 0 � x � bk then |βkTNkk(x)| � 1. For this reason (8) is valid
for x � bn.

Fix j with 2 � j � n−1 such that x ∈ I j. Then

|P(x)| � b j|β j| ·
n

∏
k= j+1

|βk ·TNkk(b j)|,

since all other terms of the product are less than 1 on I j. From (7) we have

|βk ·TNkk(b j)| <
(

2(b j − ck)
ck

)Nk

<

(
2b j

ck

)Nk

=
(

4(k+1)!
j!(2k+1)

)Nk

<

(
4 k!
j!

)Nk

.

Therefore, ∏n
k= j+1 |βk ·TNkk(b j)|< 4Nj+1+···+Nn ∏n

k= j+1(k!/ j!)Nk . The last product here
is ∏n

k= j+1 kNk+···+Nn .

On the other hand, by (7), |TNj j(0)| > (c j/δ j)Nj = (2 j +1)Nj . From this,

|P(x)| � 1
j!

(2 j +1)−Nj 4Nj+1+···+Nn
n

∏
k= j+1

kNk+···+Nn .

Since Nk + · · ·+Nn < (logn−1)−1 logn−k+1 n, it suffices to show that

log
n!
j!

+
logn− j n
logn−1

[
log4+

n

∑
k= j+1

logk

logk− j−1 n

]
< Nj log(2 j +1).

The expression in brackets does not exceed log4+2log( j+1) and log4+2 log( j+1)
logn−1

< 1
2 log(2 j + 1) for large n . On the other hand, Nj > logn− j n− 1. Thus, the desired
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inequality (8) can be reduced to the form

log
n!
j!

< log(2 j +1) ·
[
1
2

logn− j n−1

]
,

which is easy to check by considering the following cases:
if 2 � j � n− logn then log n!

j! < logn! < n · logn < log5 · [1
2 loglogn n−1

]
,

if n− logn < j � n−2 then log n!
j! < log2 n < logn · [1

2 log2 n−1
]
, and

if j = n−1 then logn < log(2n−1) · [1
2 logn−1

]
.

The inequalities above are valid for large enough n, one can take n > e7.

Before the next example, let us find the exact coefficient in the well-known in-
equality which states that gC\I ∈ Lip 1/2 for an interval I .

LEMMA 2. Suppose I = [−δ ,δ ]. Then gC\I(z)�
√

2Δ/δ for z∈C with dist(z, I)
� Δ. The coefficient

√
2/δ is sharp.

Proof. Since the level curves of the function gC\I are ellipses with focii ±δ , it
attains its maximal value, among all z with dist(z, I) = Δ , at the real points:

max{gC\I(z) : dist(z, I) = Δ} = gC\I(δ + Δ) = log(1+ t +
√

2t + t2)

with t = Δ/δ . Let us consider the function C(t) = t−1/2 log(1+ t +
√

2t + t2) for t >
0. We have C(+0) =

√
2 and C′(t) = (2t

√
t)−1 [2t/

√
2t + t2− log(1+ t +

√
2t + t2)].

The expression in brackets is negative, as is easy to check. Therefore the function C
decreases, which gives the desired inequality. �

EXAMPLE 4. For arbitrary N > 2, let K2 = {0}∪∪∞
k=0Ik, where Ik = [ak,bk] with

bk = e−Nk
and ak = b2

k . As above, let |Ik| = 2δk. Here, the set K2 is α -perfect if and
only if α � N

2 . We claim that the function gC\K2
is Hölder continuous, so K2 has

Markov’s property.
By the Wiener criterion (see e.g. [16, T. 5.4.1, p. 146]), the set K2 is regular, so

gC\K2
vanishes on K2 and is continuous throughout C.

Fix z /∈ K2 and n with an+1 � Δ = dist(z,K2) < an. Fix ζ ∈ K2 with Δ = |z−ζ |.
If ζ ∈ Ik for k � n then the monotonicity of the Green function and Lemma 2 imply
gC\K2

(z) � gC\Ik (z) �
√

2Δ/δk. Here, 2Δ/δk < 2an/δn = 4b2
n/(bn−b2

n) < 4bn/(1−
b0) < 8bn = 8a1/2N

n+1 . Hence, gC\K2
(z) � 2

√
2Δ1/4N .

If ζ � bn+1 then dist(z, In) � |z−an|� |z−ζ |+ |ζ −an|� Δ+an < 2an. Arguing
as above, we see that gC\K2

(z) � gC\In(z) � 4Δ1/4N. Therefore, gC\K2
∈ Lip 1

4N and
K2 ∈ MI(4N).

We turn to Cantor versions of the examples above. The following proposition
generalizes Theorem 3 in [10].
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PROPOSITION 1. The set K(γ) is α -perfect if and only if there exists a constant
C such that C · γs+1 � lα−1

j,s for all s ∈ N and j � 2s .

Proof. Each basic interval I j,s contains two adjacent subintervals of the next level,
let Ii,s+1 and Ik,s+1 . By definition of α -perfect sets, K(γ) ∈ (α) if and only if for some
constant C we have C · li,s+1 � (l j,s− lk,s+1)α , which implies the desired characteriza-
tion, by (5) and (3). �

EXAMPLE 5. Let γs = 1/s for s � 32 and γs = 1/32 for s < 32. Then K(γ) is
α -perfect for all α > 1, but K(γ) /∈MI. By the discussion above, this is impossible for
uniformly perfect sets.

Indeed, for large s we have δs =C0 (s!)−1 with C0 = 32!/3232 . Hence, by (4) and
(3), l j,s � C0 es/2(s!)−1, which provides K(γ) ∈ (α) for α > 1. On the other hand, by
Corollary 1, the supposition K(γ) ∈ MI will give a contradiction 1/s! � as for fixed
a > 0 and all s .

In order to give a K(γ)-version of Example 4 we use an irregular case, when
γs is the same for all s, except a subsequence where the values γsk are rather small.
Given sequences (sk)∞

k=1 of natural numbers and (εk)∞
k=1 of positive numbers, let γs =

γ0 � 1/32 for s �= sk and γsk = γ0 εk otherwise. Then, clearly, δs = γs
0 ε1 ε2 · · ·εk for

sk � s < sk+1. In the following example let us take γ0 = 1/32.

EXAMPLE 6. Given α � 1, as large as desired, there exist sequences (sk)∞
k=1 and

(εk)∞
k=1 such that the corresponding set Kα(γ) is not α -perfect. At the same time

Markov’s inequality is valid on Kα (γ) .
We will choose the sequences that provide γsk ·δ 1−α

sk−1 → 0 as k → ∞. Then, by (4)
and Proposition 1, we have Kα(γ) /∈ (α). Thus, we need

εk · (2−5 sk ε1 · · ·εk−1)1−α → 0 as k → ∞. (9)

On the other hand, if m � 5 and δsk 2msk � 1 for all k, then δs 2ms � 1 for all s. Indeed,
for sk � s < sk+1 we have δs = δsk 2−5(s−sk) and δs 2ms = δsk 2msk 2(m−5)(s−sk) � 1.
Then, by Theorem 1, Kα (γ) ∈ MI(m) provided

δsk 2msk = 2(m−5)sk ε1 ε2 · · ·εk � 1 for all k. (10)

Let us take εk = 2−(6α)k for all k, s1 = 1 and sk = [(6α)k/(6α −1)] for k � 2. where
[a] denotes the greatest integer in a . A trivial verification shows validity of (9) and (10)
for m � 6(α +1).

Taking into account T. 3 in [12] and the examples above, one can pose

PROBLEM. Given m � 1 find αm which is the greatest lower bound of α with
the property: if K ∈ MI(m) then K is α -perfect.

5. Local Markov’s inequality

Theorem 1 above gives the best Markov’s exponents only for the sets K(γ). In
general, the problem of finding these exponents is rather difficult. For example, we do
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not know m(K0) for the classical Cantor ternary set K0, which is Markov, by [4]. In
contrast to this, the characterization of exact classes LMI(m) can be presented for a
wide family of Cantor-type sets.

Let K =
⋂∞

s=0 Es, where E0 = [0,1] , Es = ∪2s

j=1I j,s with |I j,s| = l j,s and Es+1 is
obtained by deleting an open subinterval of the length h j,s from each I j,s for 1 � j � 2s.
Thus, l j,s = l2 j−1,s+1 +h j,s + l2 j,s+1.

Suppose K satisfies the following two mild conditions:
(a) ∃σ0 ∈ (0,1) : h j,s � σ0 · l j,s for all s ∈ Z+ and j � 2s

(b) ∀s ∈ Z+ ∃Hs : li,s+q � Hs · l j,s+q for all q ∈ N and for all Ii,s+q, I j,s+q ⊂ Ik,q.
Clearly, the condition (b) is valid for geometrically symmetric Cantor-type sets,

when the lengths of basic intervals of the same level are equal in length. By (5), it is
also valid for K(γ) with Hs = 8s.

By definition, K ∈ LMI(m) if and only if

Cn := sup
P∈Pn

sup
ε>0

sup
x∈K

εm |P′(x)|
|P|K∩B(x,ε)

< ∞ for all n ∈ N. (11)

THEOREM 2. Suppose a Cantor-type set K satisfies (a),(b) and m > 0 is fixed.
Then K ∈ LMI(m) if and only if for each s ∈ N there exists C = C(s,m) such that
lmj,q � C · li,s+q for all q ∈ N, j � 2q and Ii,s+q ⊂ I j,q.

Proof. Assume that K ∈ LMI(m), but, by contradiction, there exists s with

sup
q

sup
j�2q

sup
Ii, s+q⊂Ij,q

lmj,q l−1
i,s+q = ∞. (12)

Given s , let us take C2s−1 from (11) and N > HsC2s−1 (2/σ0)m es/2σ0 , where Hs and
σ0 are defined by (a) and (b). For this N, by (12), we can choose q, j � 2q and i
with Ii,s+q ⊂ I j,q such that lmj,q l−1

i,s+q > N. By I we denote the interval of q+1-st level

containing Ii,s+q. There are 2s−1 points on I , let (zk)2s−1

k=1 , that are the endpoints of

basic intervals of q+ s−1-st level. We consider the polynomial Q(x) = ∏2s−1

k=1 (x− zk),
so each subinterval Ik,s+q of I contains one point zk. Fix y ∈ K∩ I such that |Q|K∩I =
|Q(y)| and i0 with y∈ Ii0,s+q. Let zi0 ∈ Ii0,s+q. Then |Q′(zi0)|= ∏2s−1

k=1,k �=i0
|zi0 −zk|. On

the other hand, |y− zi0 | � li0,s+q and |Q(y)| � li0,s+q ∏2s−1

k=1,k �=i0
|zi0 − zk| ·β with β =

∏2s−1

k=1,k �=i0
|1+

y−zi0
zi0−zk

|. We fix the chain of intervals containing y : Ii0,s+q ⊂ Ii1,s+q−1 ⊂
·· · ⊂ I = Iis−1,q+1. Taking into account only zk for which

y−zi0
zi0−zk

> 0, we obtain, as in

Lemma 11 in [10], logβ < ∑
y−zi0
zi0−zk

� li0,s+q(h−1
i1,s+q−1 +2h−1

i2,s+q−2 + · · ·2s−2h−1
is−1,q+1).

Here, by (a), hi1,s+q−1 � σ0 · li1,s+q−1 > 2σ0 · li0,s+q, · · · ,his−1,q+1 > 2s−1σ0 · li0,s+q.

Therefore, logβ < (s−1)/2σ0 and |Q|K∩I < li0,s+q |Q′(zi0)|es/2σ0 .
Since the local Markov inequality with parameter m is valid on K, we can apply

it to Q ∈ P2s−1 , x = zi0 and ε = σ0/2 · l j,q. Then B(x,ε)∩K ⊂ I ∩K, which gives
|Q′(zi0)|�C2s−1 (2/σ0)m l−m

j,q |Q|K∩I and lmj,q <C2s−1(2/σ0)m es/2σ0 li0,s+q. By (b), this
yields lmj,q < N li,s+q, a contradiction.
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We proceed to prove K ∈ LMI(m) provided the given geometric condition. Since
the value Cn in (11) increases with n , we can consider only n from some subsequence,
let n = 2s−1 for s ∈ N. Fix P ∈ Pn, x0 ∈ K and ε ∈ (0,1). Given x0 defines a chain
of basic intervals I1,0 ⊃ I j1,1 ⊃ ·· · ⊃ I jq,q ⊃ ·· · containing x0 . Let us fix q with l jq,q �
ε < l jq−1,q−1 and denote I jq,q by I . Then B(x0,ε)∩K ⊃ I∩K. The interval I contains

2s points, let (zk)2s

k=1, that are the endpoints of basic intervals of q+ s−1-st level. We

interpolate P at these points, so P(x) = ∑2s

k=1 P(zk)Lk(x) for Lk(x) = Q(x)
(x−zk)Q′(zk)

with

Q(x) = ∏2s

k=1(x− zk). Our goal is to show that

|L′
k(x0)| � N ε−m for 1 � k � 2s, (13)

where N depends only on s and m . Provided (13) we get the desired result, since
|P′(x0)| � 2s |P|I∩K max1�k�2s |L′

k(x0)| � N 2s ε−m |P|B(x0,ε)∩K .

Clearly, |L′
k(x0)| � |Q′(zk)|−1 ∏2s

i=1,i�=k |x0 − zi|∑2s

i=1,i�=k |x0 − zi|−1. The interval I
covers 2s subintervals of s+q -th level, each of them contains one point zk. Let us first
consider the case zk ∈ I js+q,s+q, so zk and x0 are on the same subinterval of s+ q -th

level. Here, ∏2s

i=1,i�=k |x0− zi| � τ := l js+q−1,s+q−1 l2js+q−2,s+q−2 · · · l2
s−1

jq,q . By (a),

|Q′(zk)| =
2s

∏
i=1,i�=k

|zk − zi| � l js+q−1,s+q−1 h2
js+q−2,s+q−2 · · ·h2s−1

jq,q � σ2s−2
0 τ,

and

2s

∑
i=1,i�=k

|x0− zi|−1 � σ−1
0 [l−1

js+q−1,s+q−1 +2 l−1
js+q−2,s+q−2 + · · ·+2s−1 l−1

jq,q]

< 2sσ−1
0 l−1

js+q−1,s+q−1.

Therefore, |L′
k(x0)| � 2sσ1−2s

0 l−1
js+q−1,s+q−1. By condition,

εm < lmjq−1,q−1 � C(s,m) l js+q−1 ,s+q−1,

which gives (13) for the first case.
Now assume that zk and x0 belong to different subinterval of s+ q -th level. Fix

r such that zr ∈ I js+q,s+q and the chain zk ∈ Iis+q,s+q ⊂ ·· · ⊂ Iiq,q = I. Here, by (a) and

(b), |Q′(zk)| � lis+q−1,s+q−1 h2
is+q−2,s+q−2 · · ·h2s−1

iq,q � σ2s−2
0 H−2s+1

s τ with the same τ as

above. To deal with the rest, we single the term |x0 − zr| out: ∏i�=k |x0 − zi|∑i�=k |x0 −
zi|−1 = ∏i�=k,i�=r |x0 − zi| · [1 + |x0 − zr| ∑i�=k,i�=r |x0 − zi|−1]. Now, ∏i�=k,i�=r |x0 − zi| =
|x0− zk|−1 ∏i�=r |x0 − zi| � |x0− zk|−1 τ, as before, and

[· · ·] � 1+ l js+q,s+q σ−1
0 (l−1

js+q−1,s+q−1 + · · ·+2s−1 l−1
jq,q) < 1+(2s−1)/σ0 < 2s/σ0.

Combining these inequalities yields |L′
k(x0)| � (Hs/σ0)2s

2s |x0 − zk|−1, which also
gives (13) for the same reason as in the first case, since |x0 − zk| > h js+q−1,s+q−1 �
σ0 l js+q−1,s+q−1. �
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PROPOSITION 2. Suppose (γs)∞
s=1 satisfies (3) and m � 1. If K(γ) ∈ LMI(m)

then for each s ∈ N there exists C =C(s,m) such that δm
q �C ·δs+q for all q ∈ N. For

two model cases ∑∞
s=1 γs < ∞ and γs = γ1 for all s the inverse implication is valid as

well.

Proof. Suppose K(γ)∈ LMI(m) . The values i = j = 1 in Theorem 2 and applying
both inequalities in (4) yield the desired conclusion.

In the case ∑∞
s=1 γs < ∞, by (4), Theorem 2 and the given geometric condition

imply that K(γ) ∈ LMI(m) .
If γs = γ1 for all s then the condition on (δq) is trivially valid for all m � 1. On

the other hand, here the set K(γ) is uniformly perfect. Then, by J. Lithner ([13, Prop.
5.1, p. 209]), K ∈ LMI(1), so K ∈ LMI(1) for all m � 1. �

EXAMPLE 7. (to Problem 2) Let us take γs = γ1 � 1
32 for all s . Then, by Theorem

1, the global version of Markov’s inequality is valid only for m � − logγ1
log2 , whereas the

local form of Markov’s inequality is valid for all m � 1.
The sets K(γ) are not convenient to distinguish classes LMI(m) for different m .

It is better to use for this aim geometrically symmetric Cantor-type sets. By means of a
sequence A = (As)∞

s=1 we define the set K(A), as in the beginning of this section, with
0< l1 < 1/2 and |I j,s|= ls = lAs

1 for all j � 2s. The values (As)∞
s=1 with liminfs(As+1−

As) > log2/ log l−1
1 provide the condition (a).

PROPOSITION 3. Suppose K(A) satisfies the condition (a) and m � 1. Then
1) the set K(A) is α -perfect if and only if there exists a constant C such that

As+1−αAs � C for all s ∈ N;
2) K(A)∈ LMI(m) if and only if for each s∈N there exists C =C(s,m) such that

As+q � mAq +C for all q ∈ N.

Proof. Indeed, the first statement follows from the definition of α -perfect sets.
The second characterization is a corollary of Theorem 2. �

V. Totik proved in [19, T. 3, p. 721] that K(A) has Markov’s property if and only
if the sequence (As/s)∞

s=1 is bounded. As we mentioned above, the problem of charac-
terization of exact classes MI(m) is far from the solution. Here, by means of irregular
sequences (As)∞

s=1, we distinguish classes LMI(m) and show that, in general, the local
Markov inequality is not valid with the best local Markov exponent.

EXAMPLE 8. For any m � 1 there exists a set K(A) /∈ LMI(m) with K(A) ∈
LMI(m+ ε) for each ε > 0.

Let us take l1 = 1/3. Then Aq+1 = Aq +1 means that 3 lq+1 = lq. Suppose Aq+1 =
Aq + 1 for q �= qn and Aqn+1 = mAqn + n for n ∈ N. Here (qn)∞

n=1 is a sequence of
natural numbers with qn+1−qn ↑ ∞ and qn/n → ∞ as n → ∞.

Since supq(Aq+1−mAq) = ∞, we have K(A) /∈ LMI(m), by Proposition 3.
On the other hand, suppose ε > 0 and s∈N are fixed. Let us show that supq[Aq+s−

(m + ε)Aq] is finite. Fix n0 such that ε qn−1 > n and qn+1 − qn > s for n > n0.
Since Aq � q for all q, we have ε Aq > ε Aqn−1 > n for qn−1 < q � qn. If q > qn0

then there is at most one value qn between q and q + s . If [q,q + s]∩ (qn)∞
n=1 = /0
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then Aq+s = Aq + s � (m + ε)Aq +C for C = s . Otherwise there exists qn with
q � qn � q+s, let qn = q+k with k � s. Then Aq+k = Aq +k, Aq+k+1 = m(Aq +k)+n
and Aq+s = m(Aq + k)+ n+ s− 1 < (m+ ε)Aq +C for C = ms . Therefore, the limit
above does not exceed C(s,m) = max{ms, maxq�qn0

[Aq+s− (m+ ε)Aq]}.
The last two examples are related to comparison of classes MI(m) and LMI(m).

EXAMPLE 9. Let Aq = q · logq for q � 2. Then K(A)∈ LMI(m) for each m > 1,
but K(A) does not satisfy the Markov property.

Indeed, the global Markov inequality is not valid on K(A) as the sequence (Aq/q)∞
s=1

is not bounded. On the other hand, given m > 1 and s ∈ N, let q0 = s
m−1 . Then the

value C(s,m) = max{s log4, maxq�q0 [Aq+s −mAq]} provides the inequality As+q �
mAq +C(s,m), as easy to check.

EXAMPLE 10. For each m, as large as desired, there exist Markov’s set K =
Km(A) with K(A) /∈ LMI(m).

Given m, fix l1 < 2−m. Let δ0 = log2/ log l−1
1 , so δ0 < 1/m. Fix δ with δ0 < δ <

1/m. Suppose a sequence (qn)∞
n=1 of natural numbers is given. Let Aqn = qn for all n

and Aq+1 = Aq +δ for q �= qn−1. Thus, Aq = qn +(q−qn)δ for qn � q < qn+1. The
condition Aq+1 = Aq + δ means that lq+1 = lq lδ

1 < lq/2, so the set K is well-defined.
Since K satisfies (a), we can use Proposition 3.

Here Aq � q for all q . By Totik’s characterization, K has Markov’s property.
But K /∈ LMI(m) for a suitable choice of (qn)∞

n=1 . Otherwise, for s = 1 there is a
constant C = C(1,m) such that Aq+1 � mAq +C for all q. The value q = qn+1 − 1
gives qn+1 � m[qn +(qn+1−1−qn) ·δ ]+C, which is a contradiction for large n in the
case of fast growing sequence (qn)∞

n=1, for example qn = 2n2
.

The set K above belongs to LMI(m1) with m1 = 1/δ . In more general, if K(A) ∈
MI then K(A) ∈ LMI(m) with m = C0 log l−1

1 / log2, where C0 = supq Aq/q. Indeed,

lq = l
Aq
1 < 2−q, so Aq > q · log2/ log l−1

1 for all q . Therefore, As+q � C0(s + q) <
mAq +C0 s.
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