BEST EXPONENTS IN MARKOV'S INEQUALITIES

Alexander Goncharov

(Communicated by Z. Ditzian)

Abstract

By means of weakly equilibrium Cantor-type sets, solutions of two problems related to polynomial inequalities are presented: the problem by M . Baran et al. about a compact set $K \subset \mathbb{C}$ such that the Markov inequality is not valid on K with the best Markov's exponent, and the problem by L. Frerick et al. concerning compact sets satisfying the local form of Markov's inequality with a given exponent, but not satisfying the global version of Markov's inequality with the same parameter.

1. Two versions of Markov's inequality

The classical Markov inequality $\left|P^{\prime}\right|_{[-1,1]} \leqslant(\operatorname{deg} P)^{2}|P|_{[-1,1]}$ can be generalized in different ways. We consider two versions that are the most important for applications.

Let \mathscr{P}_{n} denote the set of all holomorphic polynomials of degree at most n. For any infinite compact set $K \subset \mathbb{C}$ we consider the sequence of Markov's factors $M_{n}(K)=$ $\inf \left\{M:\left|P^{\prime}\right|_{K} \leqslant M|P|_{K}, P \in \mathscr{P}_{n}\right\}$ for $n \in \mathbb{N}$. Here and in what follows, $|\cdot|_{K}$ denotes the uniform norm on K.

We see that $M_{n}(K)$ is the norm of the operator of differentiation in the space $\left(\mathscr{P}_{n},|\cdot|_{K}\right)$.

In the case of a polynomial growth rate of Markov's factors, we denote $K \in M I(m)$ if there is a constant C such that $M_{n}(K) \leqslant C n^{m}$ for all n. Then the infimum $m(K)$ of all $m>0$ such that this inequality is valid for some C is called ([2, p. 2786]) the best Markov's exponent of K.

We say that the (global) Markov inequality is valid on K (or K has Markov's property) if $K \in M I(m)$ for some m. Then we write $K \in M I$.

If a compact set K has Markov's property, then the Markov inequality is not necessarily valid on K with the best Markov's exponent. An example of such compact set in the form of a cusp in \mathbb{C}^{N} for $N \geqslant 2$ was presented by M. Baran, L. Białas-Cież, and B. Milowka in [3, p. 643]. The authors posed the question [3, p. 638]: is the same true in \mathbb{C} ?

Problem 1. Give an example of $K \subset \mathbb{C}$ such that the Markov inequality with the exponent $m(K)$ is not valid on K.

In the case of non-polar K, the knowledge about a character of smoothness of the corresponding Green function may help to estimate $M_{n}(K)$ from above. Let \hat{K} denote

[^0]the polynomial hull of K and $g_{\mathbb{C} \backslash K}$ be the Green function of $\mathbb{C} \backslash \hat{K}$ with pole at infinity (see e.g. [17, p. 108]). If K is regular with respect to the Dirichlet problem then the function $g_{\mathbb{C} \backslash K}$ is continuous throughout \mathbb{C} and we extend it to be zero on \hat{K}. The application of the Cauchy formula for P^{\prime} and the Bernstein-Walsh inequality yields the estimate
\[

$$
\begin{equation*}
M_{n}(K) \leqslant \inf _{\delta} \delta^{-1} \exp [n \cdot \omega(\delta)] \tag{1}
\end{equation*}
$$

\]

where $\omega(\cdot)$ denotes the modulus of continuity of $g_{\mathbb{C} \backslash K}$.
This gives an effective bound of $M_{n}(K)$ for the cases of temperate growth of $\omega(\cdot)$. For instance, the Hölder continuity of $g_{\mathbb{C} \backslash K}$, which means the existence of constants C, α :

$$
g_{\mathbb{C} \backslash K}(z) \leqslant C(\operatorname{dist}(z, K))^{\alpha} \text { for all } z \in \mathbb{C}
$$

(then we write $g_{\mathbb{C} \backslash K} \in \operatorname{Lip} \alpha$) implies $K \in M I(1 / \alpha)$. Indeed, given $n \in \mathbb{N}$, the value $\delta=n^{-1 / \alpha}$ in (1) gives the result.

In particular, the global Markov inequality is valid on uniformly perfect sets, since the Green function for any uniformly perfect set is Hölder continuous (see e.g. [6, p. 65]). Recall that a compact set K is uniformly perfect if it has at least two points and the moduli of annuli in the complement of K which separate K are bounded.

Markov's property is closely related to problems of polynomial approximation and extension of C^{∞} functions. W. Pleśniak in [15, T.3.3, p. 111] presented an extension operator for the space $\mathscr{E}(K)$ of Whitney functions on K with Markov's property. This operator is continuous in so-called Jackson topology, which is equivalent to the natural topology of $\mathscr{E}(K)$ if and only if the compact set K satisfies the Markov property. It should be noted that such operator was introduced in [14, p. 285] for a more special family of uniformly polynomially cuspidal compact subsets of \mathbb{R}^{n}.

However, there are sets K without Markov's property, but such that the spaces $\mathscr{E}(K)$ admit the extension operator ([8, p. 31], [9, p. 167], [1, T. 1, p. 38]).

Not only the global version of Markov's inequality, but also its local version is related to the extension problem ([11], [5], [7]).

We say that the local Markov inequality with parameter m is valid on $K \subset \mathbb{C}$ (we write $K \in \operatorname{LMI}(m)$) if there exist constants $\left(C_{n}\right)_{n=1}^{\infty}$ with $C_{n} \geqslant 1$ such that for each $P \in \mathscr{P}_{n}$, each $\varepsilon \in(0,1]$, and each $z \in K$ we have

$$
\left|P^{\prime}(z)\right| \leqslant C_{n} \varepsilon^{-m}|P|_{K \cap B(z, \varepsilon)} .
$$

Here, $B(z, \varepsilon)$ is the closed ball of radius ε centered at z.
Naturally, we write $K \in L M I$ if $K \in L M I(m)$ for some m.
Some authors (cf. [5], p. 854) call the inequality above the weak local Markov inequality, whereas $L M I$ in [13, p. 203] is $L M I(1)$ in our notations. We follow here [7, p. 592], where L. Frerick, E. Jordá, and J. Wengenroth presented a linear tame extension operator for the Whitney space $\mathscr{E}(K)$, provided $K \in \operatorname{LMI}(m)$ for some m. In particular L. Frerick et al. posed in [7, p. 602]:

Problem 2. Present $K \in \operatorname{LMI}(m)$, not satisfying the global version of Markov's inequality with the same m.

We can answer both questions by means of so-called weakly equilibrium Cantor sets.

For basic definitions and facts of Logarithmic Potential Theory see e.g. [16] and [17], log denotes the natural logarithm.

2. Weakly equilibrium Cantor sets

For the convenience of the reader we repeat the relevant material from [10], thus making our exposition self-contained. Given sequence $\gamma=\left(\gamma_{s}\right)_{s=1}^{\infty}$ with $0<\gamma_{s}<1 / 4$, we define a sequence of real polynomials

$$
P_{2}(x)=x(x-1) \quad \text { and } \quad P_{2^{s+1}}=P_{2^{s}}\left(P_{2^{s}}+r_{s}\right)
$$

for $s \in \mathbb{N}$ with $r_{0}=1$ and $r_{s}=\gamma_{s} r_{s-1}^{2}$ for $s \geqslant 1$. We consider

$$
E_{s}:=\left\{x \in \mathbb{R}: P_{2^{s+1}}(x) \leqslant 0\right\}=\cup_{j=1}^{2^{s}} I_{j, s}
$$

The closed basic intervals $I_{j, s}$ of the s-th level are disjoint and $E_{s+1} \subset E_{s}$. This gives a Cantor type set $K(\gamma):=\cap_{s=0}^{\infty} E_{s}$.

The sequence of level domains $D_{s}=\left\{z \in \mathbb{C}:\left|P_{2^{s}}(z)+r_{s} / 2\right|<r_{s} / 2\right\}, s \in \mathbb{N}$, is a nested family: $\bar{D}_{s} \searrow K(\gamma)$. Consequently, for the corresponding Robin constants we have $\operatorname{Rob}\left(\bar{D}_{s}\right)=2^{-s} \log \frac{2}{r_{s}} \nearrow \operatorname{Rob}(K(\gamma))$. Thus the set $K(\gamma)$ is polar if and only if $\lim _{s \rightarrow \infty} 2^{-s} \log \frac{2}{r_{s}}=\infty$. If this limit is finite and $z \notin K(\gamma)$, then

$$
g_{\mathbb{C} \backslash K(\gamma)}(z)=\lim _{s \rightarrow \infty} 2^{-s} \log \left|P_{2^{s}}(z) / r_{s}\right|
$$

Let $\delta_{s}=\gamma_{1} \gamma_{2} \cdots \gamma_{s}$, so $r_{1} r_{2} \cdots r_{s-1} \delta_{s}=r_{s}$. Since $\left|P_{2^{s}}^{\prime}(0)\right|=r_{s} / \delta_{s}$ and $\mid P_{2^{s}}+$ $r_{s} /\left.2\right|_{K(\gamma)}=r_{s} / 2$, we get for $s \in \mathbb{N}$

$$
\begin{equation*}
M_{2^{s}}(K(\gamma)) \geqslant 2 / \delta_{s} \tag{2}
\end{equation*}
$$

In what follows we will consider only $K(\gamma)$ satisfying the assumption

$$
\begin{equation*}
\gamma_{s} \leqslant 1 / 32 \quad \text { for } \quad s \in \mathbb{N} \tag{3}
\end{equation*}
$$

which provides some additional properties of the sets. In particular, they are weakly equilibrium in the following sense.

Let us uniformly distribute the mass 2^{-s} on each $I_{j, s}$ for $1 \leqslant j \leqslant 2^{s}$. We denote by λ_{s} the normalized in this sense Lebesgue measure on the set E_{s}. If the set $K(\gamma)$ is not polar, then λ_{s} converges in the weak* topology to the equilibrium measure of the set $K(\gamma)$.

The lengths $l_{j, s}$ of the intervals $I_{j, s}$ of the s-th level are not the same, but we can estimate them in terms of the parameter δ_{s} ([10], (9) and L.6):

$$
\begin{equation*}
\delta_{s}<l_{1, s}<2 \delta_{s}, \quad \delta_{s}<l_{j, s}<\delta_{s} \cdot \exp \left(16 \sum_{k=1}^{s} \gamma_{k}\right) \text { for } 2 \leqslant j \leqslant 2^{s} \tag{4}
\end{equation*}
$$

If $I_{i, s} \subset I_{j, s-1}$ then ([10], Cor.2)

$$
\begin{equation*}
\frac{1}{2} \gamma_{s} l_{j, s-1}<l_{i, s}<4 \gamma_{s} l_{j, s-1} \tag{5}
\end{equation*}
$$

If the set $K(\gamma)$ is not polar, then we can characterize smoothness of $g_{\mathbb{C} \backslash K(\gamma)}$ in terms of the parameter $\rho_{s}=\sum_{k=s+1}^{\infty} 2^{-k} \log \frac{1}{2 \gamma_{k}}$. It has potential theory meaning: $\rho_{s}=\operatorname{Rob}(K(\gamma))-\operatorname{Rob}\left(\bar{D}_{s}\right)$, so it shows how rapidly the minimal energy for the set \bar{D}_{s} approximates the energy corresponding to $\mu_{K(\gamma)}$. By T. 5 in [10],

$$
\begin{equation*}
\rho_{s}+2^{-s} \log \frac{\delta}{\delta_{s}}<\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right)<\rho_{s}+2^{-s} \log \frac{16 \delta}{\delta_{s}} \tag{6}
\end{equation*}
$$

for $\delta_{s} \leqslant \delta<\delta_{s-1}$. This and (1) provide
Example 1. ([10], Ex. 6) Given $m_{0} \geqslant 5$, let $\gamma_{s}=2^{-m_{0}}$ for all s. Then $m(K(\gamma))=$ m_{0}.

In view of the possibility to represent $K(\gamma)$ in terms of a controllable sequence of polynomials, these sets are highly suitable for applications to polynomial inequalities.

3. Markov's exponents for $K(\gamma)$

In the synthesis of Example 1, we estimate $m(K(\gamma))$ for the general case.
LEMMA 1. Let $\left(x_{k}\right)_{k=1}^{\infty}$ be a sequence of real numbers. Suppose $x_{1}+x_{2}+\cdots+$ $x_{n} \leqslant C_{0}$ with some constant C_{0} for all n. Then for $C_{1}=C_{0} e^{C_{0}}+e^{-1}$ we have for all n

$$
e^{x_{1}+x_{2}+\cdots+x_{n}}\left(x_{n+1}+\frac{1}{2} x_{n+2}+\cdots+\frac{1}{2^{k-1}} x_{n+k}+\cdots\right) \leqslant C_{1} .
$$

Proof. Given fixed n, let $t_{n}=x_{1}+x_{2}+\cdots+x_{n}$. Then $t_{n} e^{t_{n}} \geqslant-e^{-1}$. By assumption, $2^{-i}\left(x_{n+1}+\cdots+x_{n+i}\right) \leqslant 2^{-i}\left(C_{0}-t_{n}\right)$. Summing these inequalities for $i=$ $1,2, \cdots, k-1, k, k$ we get $e^{t_{n}}\left(x_{n+1}+\frac{1}{2} x_{n+2}+\cdots+\frac{1}{2^{k-1}} x_{n+k}\right) \leqslant e^{t_{n}}\left(C_{0}-t_{n}\right) \leqslant C_{1}$, which is the desired conclusion.

THEOREM 1. For the set $K(\gamma)$ with (3) and $m \in \mathbb{R}, m \geqslant 5$ the following statements are equivalent.
(i) $g_{\mathbb{C} \backslash K(\gamma)} \in \operatorname{Lip} \frac{1}{m}$.
(ii) $K(\gamma) \in \operatorname{MI}(m)$.
(iii) There exists a constant C such that $C \cdot \delta_{s} \geqslant 2^{-m s}$ for all $s \in \mathbb{N}$.

Thus, $m(K(\gamma))=\inf \left\{m: \sup _{s}\left(\log _{2} 1 / \delta_{s}-m s\right)<\infty\right\}$.
Proof. The implication $(i) \Rightarrow$ (ii) follows (1) and the next argument.
From (2) we have the implication $(i i) \Rightarrow(i i i)$.
Let us show that (iii) implies (i). The set $K(\gamma)$, provided (iii), is not polar. Indeed, $1 / \gamma_{k}=\delta_{k-1} / \delta_{k} \leqslant C 2^{(m-5) k+5}$, by (3) and (iii). Therefore the series that represents ρ_{s} converges, $\operatorname{Rob}(K(\gamma))<\infty$, and we can use (6).

Suppose $\delta_{s} \leqslant \delta<\delta_{s-1}$. We proceed to show that $\rho_{s} \leqslant C_{1} \delta_{s}^{1 / m}$ for some constant C_{1}. By the substitution $\gamma_{k}=2^{-m} e^{-m x_{k}}$ we reduce the proof of this inequality to Lemma 1. Here, $\delta_{s}=2^{-m s} e^{-m\left(x_{1}+x_{2}+\cdots+x_{s}\right)}$ and (iii) provides $x_{1}+x_{2}+\cdots+x_{s} \leqslant C_{0}=$ $\frac{1}{m} \log C$. On the other hand, $\log \frac{1}{2 \gamma_{k}}=(m-1) \log 2+m x_{k}$, so $\rho_{s}=(m-1) 2^{-s} \log 2+$ $m 2^{-s-1}\left(x_{s+1}+\frac{1}{2} x_{s+2}+\cdots\right)$. Lemma 1 now yields the desired inequality.

It remains to prove that $2^{-s} \log \frac{16 \delta}{\delta_{s}} \leqslant C_{2} \delta^{1 / m}$ for some constant C_{2}. Fix $\beta \in(0,1]$ such that $\delta=\delta_{s}^{\beta} \delta_{s-1}^{1-\beta}$. Then $\delta=\delta_{s} T$ with $T=\left(1 / \gamma_{s}\right)^{1-\beta} \geqslant 1$.

Applying (iii) we reduce the required inequality to the evident form

$$
2^{-s} \log 16+2^{-s} \log T \leqslant C_{2} C^{-1 / m} 2^{-s} T^{1 / m}
$$

By (6), $\omega\left(g_{\mathbb{C} \backslash K(\gamma)}, \delta\right)<\left(C_{1}+C_{2}\right) \delta^{1 / m}$ and $g_{\mathbb{C} \backslash K(\gamma)} \in \operatorname{Lip} \frac{1}{m}$.
Example 2. (to Problem 1) For each $m_{0} \geqslant 5$ there exists $K(\gamma)$ with $m(K(\gamma))=$ m_{0} such that $K(\gamma) \notin M I\left(m_{0}\right)$.

Indeed, let $N_{k} \nearrow \infty$ with $N_{0}=0, N_{k}=o(k)$ (for example $N_{k}=\sqrt{k}$). Take $\gamma_{k}=$ $2^{-m_{0}-N_{k}+N_{k-1}}$. Then $\delta_{s}=2^{-s \cdot m_{0}-N_{s}}$. Here the condition $\exists C: C \cdot \delta_{s} \geqslant 2^{-m s}, \forall s$ is valid for each $m>m_{0}$ but is not valid for $m=m_{0}$.

Corollary 1. (Compare to T. 3 in [19, p. 721]) The following are equivalent. (I) $g_{\mathbb{C} \backslash K(\gamma)}$ is Hölder continuous.
(II) $K(\gamma)$ has Markov's property.
(III) There exists $a>0$ such that $\delta_{s} \geqslant a^{s}$ for all $s \in \mathbb{N}$.

The condition (iii) of Theorem 1 does not imply that $K(\gamma)$ is uniformly perfect. By Theorem 3 in [10], the set $K(\gamma)$ is uniformly perfect if and only if $\inf _{s} \gamma_{s}>0$. Let us construct Markov's set $K(\gamma)$ even though it is not α-perfect for any α given beforehand.

4. α-perfect sets

Given $\alpha \geqslant 1$, a compact set $K \subset \mathbb{C}$ is a perfect set of the class α ([18, p. 74]) if there are constants $C \geqslant 1, \delta>0$ such that for any $y \in K$ one can find a sequence $\left(x_{j}\right)_{j=1}^{\infty} \subset K$ such that $\left|y-x_{j}\right| \downarrow 0,\left|y-x_{1}\right| \geqslant \delta$ and $C \cdot\left|y-x_{j+1}\right| \geqslant\left|y-x_{j}\right|^{\alpha}$ for any $j \in \mathbb{N}$. In this case we will write $K \in(\alpha)$.

Thus, $K \in(1)$ means that K is uniformly perfect.
If $K \in M I(m)$ then K is α-perfect for $\alpha>2 m$. This was proved by Jonsson in [12, T. 3, p. 96].

On the other hand, in unpublished preprint by B.Uzun and the author the following examples were suggested: $K_{1} \in(\alpha)$ for any $\alpha>1$ without Markov's property, and, given α, the set $K_{2} \notin(\alpha)$ with Markov's property. For the convenience of the reader we repeat these examples here and, then, will give their Cantor versions.

Example 3. Let $K_{1}=\{0\} \cup \cup_{k=2}^{\infty} I_{k}$, where $I_{k}=\left[a_{k}, b_{k}\right]=\left[c_{k}-\delta_{k}, c_{k}+\delta_{k}\right]$ with $b_{k}=\frac{1}{k!}, a_{k}=b_{k}-b_{k+1}$. Clearly, K_{1} is α-perfect set for any $\alpha>1$. We claim that K_{1} does not satisfy the Markov property.

We use the Chebyshev polynomials $T_{N}(x)=\cos (N \cdot \arccos x)$ for $|x| \leqslant 1, N \in \mathbb{Z}_{+}$. Given k, let $T_{N k}$ denote the Chebyshev polynomial corresponding to the interval I_{k}, that is $T_{N k}(x)=T_{N}\left(\frac{x-c_{k}}{\delta_{k}}\right)$. The well-known representation $T_{N}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{N}+\right.$ $\left.\left(x-\sqrt{x^{2}-1}\right)^{N}\right]$ for $|x|>1$ implies

$$
\begin{equation*}
\left(\Delta / \delta_{k}\right)^{N}<\left|T_{N k}\left(c_{k} \pm \Delta\right)\right|<\left(2 \Delta / \delta_{k}\right)^{N} \text { for } \Delta>\delta_{k} \tag{7}
\end{equation*}
$$

For fixed large n, let us consider the polynomial $P(x)=x \cdot \prod_{k=2}^{n} \beta_{k} T_{N_{k} k}(x)$, with $\beta_{k}=T_{N_{k} k}^{-1}(0)$. We say that P is a "nearly Chebyshev" polynomial for K_{1}, if degrees $\left(N_{k}\right)_{k=2}^{n}$ are chosen in a such way that the maximal values of $|P|$ on the intervals $\left(I_{k}\right)_{k=2}^{n}$ are approximately the same. It is difficult to find the best possible values of these degrees. For our aim it is enough to take $N_{k}=\left[\log ^{n-k} n\right]$, where $[a]$ denotes the greatest integer in a.

Clearly, $\operatorname{deg} P<\log ^{n} n$ and $P^{\prime}(0)=1$. We will show that for each $x \in K_{1}$

$$
\begin{equation*}
|P(x)| \leqslant b_{n} \tag{8}
\end{equation*}
$$

It will follow the absence of Markov's property of K_{1}, since $n!\leqslant C \cdot(\log n)^{n \cdot m}$ is a contradiction for fixed C, m and $n \rightarrow \infty$.

Let us fix $x \in K_{1}$. If $0 \leqslant x \leqslant b_{k}$ then $\left|\beta_{k} T_{N_{k} k}(x)\right| \leqslant 1$. For this reason (8) is valid for $x \leqslant b_{n}$.

Fix j with $2 \leqslant j \leqslant n-1$ such that $x \in I_{j}$. Then

$$
|P(x)| \leqslant b_{j}\left|\beta_{j}\right| \cdot \prod_{k=j+1}^{n}\left|\beta_{k} \cdot T_{N_{k} k}\left(b_{j}\right)\right|,
$$

since all other terms of the product are less than 1 on I_{j}. From (7) we have

$$
\left|\beta_{k} \cdot T_{N_{k} k}\left(b_{j}\right)\right|<\left(\frac{2\left(b_{j}-c_{k}\right)}{c_{k}}\right)^{N_{k}}<\left(\frac{2 b_{j}}{c_{k}}\right)^{N_{k}}=\left(\frac{4(k+1)!}{j!(2 k+1)}\right)^{N_{k}}<\left(\frac{4 k!}{j!}\right)^{N_{k}}
$$

Therefore, $\prod_{k=j+1}^{n}\left|\beta_{k} \cdot T_{N_{k} k}\left(b_{j}\right)\right|<4^{N_{j+1}+\cdots+N_{n}} \prod_{k=j+1}^{n}(k!/ j!)^{N_{k}}$. The last product here is $\prod_{k=j+1}^{n} k^{N_{k}+\cdots+N_{n}}$.

On the other hand, by (7), $\left|T_{N_{j} j}(0)\right|>\left(c_{j} / \delta_{j}\right)^{N_{j}}=(2 j+1)^{N_{j}}$. From this,

$$
|P(x)| \leqslant \frac{1}{j!}(2 j+1)^{-N_{j}} 4^{N_{j+1}+\cdots+N_{n}} \prod_{k=j+1}^{n} k^{N_{k}+\cdots+N_{n}}
$$

Since $N_{k}+\cdots+N_{n}<(\log n-1)^{-1} \log ^{n-k+1} n$, it suffices to show that

$$
\log \frac{n!}{j!}+\frac{\log ^{n-j} n}{\log n-1}\left[\log 4+\sum_{k=j+1}^{n} \frac{\log k}{\log ^{k-j-1} n}\right]<N_{j} \log (2 j+1)
$$

The expression in brackets does not exceed $\log 4+2 \log (j+1)$ and $\frac{\log 4+2 \log (j+1)}{\log n-1}$ $<\frac{1}{2} \log (2 j+1)$ for large n. On the other hand, $N_{j}>\log ^{n-j} n-1$. Thus, the desired
inequality (8) can be reduced to the form

$$
\log \frac{n!}{j!}<\log (2 j+1) \cdot\left[\frac{1}{2} \log ^{n-j} n-1\right]
$$

which is easy to check by considering the following cases:
if $2 \leqslant j \leqslant n-\log n$ then $\log \frac{n!}{j!}<\log n!<n \cdot \log n<\log 5 \cdot\left[\frac{1}{2} \log ^{\log n} n-1\right]$,
if $n-\log n<j \leqslant n-2$ then $\log \frac{n!}{j!}<\log ^{2} n<\log n \cdot\left[\frac{1}{2} \log ^{2} n-1\right]$, and
if $j=n-1$ then $\log n<\log (2 n-1) \cdot\left[\frac{1}{2} \log n-1\right]$.
The inequalities above are valid for large enough n, one can take $n>e^{7}$.
Before the next example, let us find the exact coefficient in the well-known inequality which states that $g_{\mathbb{C} \backslash I} \in \operatorname{Lip} 1 / 2$ for an interval I.

Lemma 2. Suppose $I=[-\delta, \delta]$. Then $g_{\mathbb{C} \backslash I}(z) \leqslant \sqrt{2 \Delta / \delta}$ for $z \in \mathbb{C}$ with dist (z, I) $\leqslant \Delta$. The coefficient $\sqrt{2 / \delta}$ is sharp.

Proof. Since the level curves of the function $g_{\mathbb{C} \backslash I}$ are ellipses with focii $\pm \delta$, it attains its maximal value, among all z with $\operatorname{dist}(z, I)=\Delta$, at the real points:

$$
\max \left\{g_{\mathbb{C} \backslash I}(z): \operatorname{dist}(z, I)=\Delta\right\}=g_{\mathbb{C} \backslash I}(\delta+\Delta)=\log \left(1+t+\sqrt{2 t+t^{2}}\right)
$$

with $t=\Delta / \delta$. Let us consider the function $C(t)=t^{-1 / 2} \log \left(1+t+\sqrt{2 t+t^{2}}\right)$ for $t>$ 0 . We have $C(+0)=\sqrt{2}$ and $C^{\prime}(t)=(2 t \sqrt{t})^{-1}\left[2 t / \sqrt{2 t+t^{2}}-\log \left(1+t+\sqrt{2 t+t^{2}}\right)\right]$. The expression in brackets is negative, as is easy to check. Therefore the function C decreases, which gives the desired inequality.

Example 4. For arbitrary $N>2$, let $K_{2}=\{0\} \cup \cup_{k=0}^{\infty} I_{k}$, where $I_{k}=\left[a_{k}, b_{k}\right]$ with $b_{k}=e^{-N^{k}}$ and $a_{k}=b_{k}^{2}$. As above, let $\left|I_{k}\right|=2 \delta_{k}$. Here, the set K_{2} is α-perfect if and only if $\alpha \geqslant \frac{N}{2}$. We claim that the function $g_{\mathbb{C} \backslash K_{2}}$ is Hölder continuous, so K_{2} has Markov's property.

By the Wiener criterion (see e.g. [16, T. 5.4.1, p. 146]), the set K_{2} is regular, so $g_{\mathbb{C} \backslash K_{2}}$ vanishes on K_{2} and is continuous throughout \mathbb{C}.

Fix $z \notin K_{2}$ and n with $a_{n+1} \leqslant \Delta=\operatorname{dist}\left(z, K_{2}\right)<a_{n}$. Fix $\zeta \in K_{2}$ with $\Delta=|z-\zeta|$. If $\zeta \in I_{k}$ for $k \leqslant n$ then the monotonicity of the Green function and Lemma 2 imply $g_{\mathbb{C} \backslash K_{2}}(z) \leqslant g_{\mathbb{C} \backslash J_{k}}(z) \leqslant \sqrt{2 \Delta / \delta_{k}}$. Here, $2 \Delta / \delta_{k}<2 a_{n} / \delta_{n}=4 b_{n}^{2} /\left(b_{n}-b_{n}^{2}\right)<4 b_{n} /(1-$ $\left.b_{0}\right)<8 b_{n}=8 a_{n+1}^{1 / 2 N}$. Hence, $g_{\mathbb{C} \backslash K_{2}}(z) \leqslant 2 \sqrt{2} \Delta^{1 / 4 N}$.

If $\zeta \leqslant b_{n+1}$ then $\operatorname{dist}\left(z, I_{n}\right) \leqslant\left|z-a_{n}\right| \leqslant|z-\zeta|+\left|\zeta-a_{n}\right| \leqslant \Delta+a_{n}<2 a_{n}$. Arguing as above, we see that $g_{\mathbb{C} \backslash K_{2}}(z) \leqslant g_{\mathbb{C} \backslash I_{n}}(z) \leqslant 4 \Delta^{1 / 4 N}$. Therefore, $g_{\mathbb{C} \backslash K_{2}} \in \operatorname{Lip} \frac{1}{4 N}$ and $K_{2} \in \operatorname{MI}(4 N)$.

We turn to Cantor versions of the examples above. The following proposition generalizes Theorem 3 in [10].

Proposition 1. The set $K(\gamma)$ is α-perfect if and only if there exists a constant C such that $C \cdot \gamma_{s+1} \geqslant l_{j, s}^{\alpha-1}$ for all $s \in \mathbb{N}$ and $j \leqslant 2^{s}$.

Proof. Each basic interval $I_{j, s}$ contains two adjacent subintervals of the next level, let $I_{i, s+1}$ and $I_{k, s+1}$. By definition of α-perfect sets, $K(\gamma) \in(\alpha)$ if and only if for some constant C we have $C \cdot l_{i, s+1} \geqslant\left(l_{j, s}-l_{k, s+1}\right)^{\alpha}$, which implies the desired characterization, by (5) and (3).

Example 5. Let $\gamma_{s}=1 / s$ for $s \geqslant 32$ and $\gamma_{s}=1 / 32$ for $s<32$. Then $K(\gamma)$ is α-perfect for all $\alpha>1$, but $K(\gamma) \notin M I$. By the discussion above, this is impossible for uniformly perfect sets.

Indeed, for large s we have $\delta_{s}=C_{0}(s!)^{-1}$ with $C_{0}=32!/ 32^{32}$. Hence, by (4) and (3), $l_{j, s} \leqslant C_{0} e^{s / 2}(s!)^{-1}$, which provides $K(\gamma) \in(\alpha)$ for $\alpha>1$. On the other hand, by Corollary 1 , the supposition $K(\gamma) \in M I$ will give a contradiction $1 / s!\geqslant a^{s}$ for fixed $a>0$ and all s.

In order to give a $K(\gamma)$-version of Example 4 we use an irregular case, when γ_{s} is the same for all s, except a subsequence where the values $\gamma_{s_{k}}$ are rather small. Given sequences $\left(s_{k}\right)_{k=1}^{\infty}$ of natural numbers and $\left(\varepsilon_{k}\right)_{k=1}^{\infty}$ of positive numbers, let $\gamma_{s}=$ $\gamma_{0} \leqslant 1 / 32$ for $s \neq s_{k}$ and $\gamma_{s_{k}}=\gamma_{0} \varepsilon_{k}$ otherwise. Then, clearly, $\delta_{s}=\gamma_{0}^{s} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{k}$ for $s_{k} \leqslant s<s_{k+1}$. In the following example let us take $\gamma_{0}=1 / 32$.

Example 6. Given $\alpha \geqslant 1$, as large as desired, there exist sequences $\left(s_{k}\right)_{k=1}^{\infty}$ and $\left(\varepsilon_{k}\right)_{k=1}^{\infty}$ such that the corresponding set $K_{\alpha}(\gamma)$ is not α-perfect. At the same time Markov's inequality is valid on $K_{\alpha}(\gamma)$.

We will choose the sequences that provide $\gamma_{s_{k}} \cdot \delta_{s_{k}-1}^{1-\alpha} \rightarrow 0$ as $k \rightarrow \infty$. Then, by (4) and Proposition 1, we have $K_{\alpha}(\gamma) \notin(\alpha)$. Thus, we need

$$
\begin{equation*}
\varepsilon_{k} \cdot\left(2^{-5 s_{k}} \varepsilon_{1} \cdots \varepsilon_{k-1}\right)^{1-\alpha} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{9}
\end{equation*}
$$

On the other hand, if $m \geqslant 5$ and $\delta_{s_{k}} 2^{m s_{k}} \geqslant 1$ for all k, then $\delta_{s} 2^{m s} \geqslant 1$ for all s. Indeed, for $s_{k} \leqslant s<s_{k+1}$ we have $\delta_{s}=\delta_{s_{k}} 2^{-5\left(s-s_{k}\right)}$ and $\delta_{s} 2^{m s}=\delta_{s_{k}} 2^{m s_{k}} 2^{(m-5)\left(s-s_{k}\right)} \geqslant 1$. Then, by Theorem $1, K_{\alpha}(\gamma) \in M I(m)$ provided

$$
\begin{equation*}
\delta_{s_{k}} 2^{m s_{k}}=2^{(m-5) s_{k}} \varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{k} \geqslant 1 \text { for all } k \tag{10}
\end{equation*}
$$

Let us take $\varepsilon_{k}=2^{-(6 \alpha)^{k}}$ for all $k, s_{1}=1$ and $s_{k}=\left[(6 \alpha)^{k} /(6 \alpha-1)\right]$ for $k \geqslant 2$. where $[a]$ denotes the greatest integer in a. A trivial verification shows validity of (9) and (10) for $m \geqslant 6(\alpha+1)$.

Taking into account T. 3 in [12] and the examples above, one can pose
Problem. Given $m \geqslant 1$ find α_{m} which is the greatest lower bound of α with the property: if $K \in M I(m)$ then K is α-perfect.

5. Local Markov's inequality

Theorem 1 above gives the best Markov's exponents only for the sets $K(\gamma)$. In general, the problem of finding these exponents is rather difficult. For example, we do
not know $m\left(K_{0}\right)$ for the classical Cantor ternary set K_{0}, which is Markov, by [4]. In contrast to this, the characterization of exact classes $\operatorname{LMI}(m)$ can be presented for a wide family of Cantor-type sets.

Let $K=\bigcap_{s=0}^{\infty} E_{s}$, where $E_{0}=[0,1], E_{s}=\cup_{j=1}^{2^{s}} I_{j, s}$ with $\left|I_{j, s}\right|=l_{j, s}$ and E_{s+1} is obtained by deleting an open subinterval of the length $h_{j, s}$ from each $I_{j, s}$ for $1 \leqslant j \leqslant 2^{s}$. Thus, $l_{j, s}=l_{2 j-1, s+1}+h_{j, s}+l_{2 j, s+1}$.

Suppose K satisfies the following two mild conditions:
(a) $\exists \sigma_{0} \in(0,1): h_{j, s} \geqslant \sigma_{0} \cdot l_{j, s}$ for all $s \in \mathbb{Z}_{+}$and $j \leqslant 2^{s}$
(b) $\forall s \in \mathbb{Z}_{+} \exists H_{s}: l_{i, s+q} \leqslant H_{s} \cdot l_{j, s+q}$ for all $q \in \mathbb{N}$ and for all $I_{i, s+q}, I_{j, s+q} \subset I_{k, q}$.

Clearly, the condition (b) is valid for geometrically symmetric Cantor-type sets, when the lengths of basic intervals of the same level are equal in length. By (5), it is also valid for $K(\gamma)$ with $H_{s}=8^{s}$.

By definition, $K \in \operatorname{LMI}(m)$ if and only if

$$
\begin{equation*}
C_{n}:=\sup _{P \in \mathscr{P}_{n}} \sup _{\varepsilon>0} \sup _{x \in K} \varepsilon^{m} \frac{\left|P^{\prime}(x)\right|}{|P|_{K \cap B(x, \varepsilon)}}<\infty \text { for all } n \in \mathbb{N} . \tag{11}
\end{equation*}
$$

THEOREM 2. Suppose a Cantor-type set K satisfies $(a),(b)$ and $m>0$ is fixed. Then $K \in \operatorname{LMI}(m)$ if and only if for each $s \in \mathbb{N}$ there exists $C=C(s, m)$ such that $l_{j, q}^{m} \leqslant C \cdot l_{i, s+q}$ for all $q \in \mathbb{N}, j \leqslant 2^{q}$ and $I_{i, s+q} \subset I_{j, q}$.

Proof. Assume that $K \in \operatorname{LMI}(m)$, but, by contradiction, there exists s with

$$
\begin{equation*}
\sup _{q} \sup _{j \leqslant 2^{q}} \sup _{I_{i, s+q} \subset I_{j, q}} l_{j, q}^{m} l_{i, s+q}^{-1}=\infty . \tag{12}
\end{equation*}
$$

Given s, let us take $C_{2^{s-1}}$ from (11) and $N>H_{s} C_{2^{s-1}}\left(2 / \sigma_{0}\right)^{m} e^{s / 2 \sigma_{0}}$, where H_{s} and σ_{0} are defined by (a) and (b). For this N, by (12), we can choose $q, j \leqslant 2^{q}$ and i with $I_{i, s+q} \subset I_{j, q}$ such that $l_{j, q}^{m} l_{i, s+q}^{-1}>N$. By I we denote the interval of $q+1$-st level containing $I_{i, s+q}$. There are 2^{s-1} points on I, let $\left(z_{k}\right)_{k=1}^{2^{s-1}}$, that are the endpoints of basic intervals of $q+s-1$-st level. We consider the polynomial $Q(x)=\prod_{k=1}^{2^{s-1}}\left(x-z_{k}\right)$, so each subinterval $I_{k, s+q}$ of I contains one point z_{k}. Fix $y \in K \cap I$ such that $|Q|_{K \cap I}=$ $|Q(y)|$ and i_{0} with $y \in I_{i_{0}, s+q}$. Let $z_{i_{0}} \in I_{i_{0}, s+q}$. Then $\left|Q^{\prime}\left(z_{i_{0}}\right)\right|=\prod_{k=1, k \neq i_{0}}^{2^{s-1}}\left|z_{i_{0}}-z_{k}\right|$. On the other hand, $\left|y-z_{i_{0}}\right| \leqslant l_{i_{0}, s+q}$ and $|Q(y)| \leqslant l_{i_{0}, s+q} \prod_{k=1, k \neq i_{0}}^{2^{s-1}}\left|z_{i_{0}}-z_{k}\right| \cdot \beta$ with $\beta=$ $\prod_{k=1, k \neq i_{0}}^{2^{s-1}}\left|1+\frac{y-z_{i_{0}}}{z_{i_{0}}-z_{k}}\right|$. We fix the chain of intervals containing $y: I_{i_{0}, s+q} \subset I_{i_{1}, s+q-1} \subset$ $\cdots \subset I=I_{i_{s-1}, q+1}$. Taking into account only z_{k} for which $\frac{y-z i_{0}}{z_{i_{0}}-z_{k}}>0$, we obtain, as in Lemma 11 in [10], $\log \beta<\sum \frac{y-z_{i_{0}}}{z_{i_{0}}-z_{k}} \leqslant l_{i_{0}, s+q}\left(h_{i_{1}, s+q-1}^{-1}+2 h_{i_{2}, s+q-2}^{-1}+\cdots 2^{s-2} h_{i_{s-1}, q+1}^{-1}\right)$. Here, by (a), $h_{i_{1}, s+q-1} \geqslant \sigma_{0} \cdot l_{i_{1}, s+q-1}>2 \sigma_{0} \cdot l_{i_{0}, s+q}, \cdots, h_{i_{s-1}, q+1}>2^{s-1} \sigma_{0} \cdot l_{i_{0}, s+q}$. Therefore, $\log \beta<(s-1) / 2 \sigma_{0}$ and $|Q|_{K \cap I}<l_{i_{0}, s+q}\left|Q^{\prime}\left(z_{i_{0}}\right)\right| e^{s / 2 \sigma_{0}}$.

Since the local Markov inequality with parameter m is valid on K, we can apply it to $Q \in \mathscr{P}_{2^{s-1}}, x=z_{i_{0}}$ and $\varepsilon=\sigma_{0} / 2 \cdot l_{j, q}$. Then $B(x, \varepsilon) \cap K \subset I \cap K$, which gives $\left|Q^{\prime}\left(z_{i_{0}}\right)\right| \leqslant C_{2^{s-1}}\left(2 / \sigma_{0}\right)^{m} l_{j, q}^{-m}|Q|_{K \cap I}$ and $l_{j, q}^{m}<C_{2^{s-1}}\left(2 / \sigma_{0}\right)^{m} e^{s / 2 \sigma_{0}} l_{i_{0}, s+q}$. By (b), this yields $l_{j, q}^{m}<N l_{i, s+q}$, a contradiction.

We proceed to prove $K \in \operatorname{LMI}(m)$ provided the given geometric condition. Since the value C_{n} in (11) increases with n, we can consider only n from some subsequence, let $n=2^{s}-1$ for $s \in \mathbb{N}$. Fix $P \in \mathscr{P}_{n}, x_{0} \in K$ and $\varepsilon \in(0,1)$. Given x_{0} defines a chain of basic intervals $I_{1,0} \supset I_{j_{1}, 1} \supset \cdots \supset I_{j_{q}, q} \supset \cdots$ containing x_{0}. Let us fix q with $l_{j_{q}, q} \leqslant$ $\varepsilon<l_{j_{q-1}, q-1}$ and denote $I_{j_{q}, q}$ by I. Then $B\left(x_{0}, \varepsilon\right) \cap K \supset I \cap K$. The interval I contains 2^{s} points, let $\left(z_{k}\right)_{k=1}^{s}$, that are the endpoints of basic intervals of $q+s-1$-st level. We interpolate P at these points, so $P(x)=\sum_{k=1}^{2^{s}} P\left(z_{k}\right) L_{k}(x)$ for $L_{k}(x)=\frac{Q(x)}{\left(x-z_{k}\right) Q^{\prime}\left(z_{k}\right)}$ with $Q(x)=\prod_{k=1}^{2^{s}}\left(x-z_{k}\right)$. Our goal is to show that

$$
\begin{equation*}
\left|L_{k}^{\prime}\left(x_{0}\right)\right| \leqslant N \varepsilon^{-m} \quad \text { for } \quad 1 \leqslant k \leqslant 2^{s} \tag{13}
\end{equation*}
$$

where N depends only on s and m. Provided (13) we get the desired result, since $\left|P^{\prime}\left(x_{0}\right)\right| \leqslant 2^{s}|P|_{I \cap K} \max _{1 \leqslant k \leqslant 2^{s}}\left|L_{k}^{\prime}\left(x_{0}\right)\right| \leqslant N 2^{s} \varepsilon^{-m}|P|_{B\left(x_{0}, \varepsilon\right) \cap K}$.

Clearly, $\left|L_{k}^{\prime}\left(x_{0}\right)\right| \leqslant\left|Q^{\prime}\left(z_{k}\right)\right|^{-1} \prod_{i=1, i \neq k}^{2^{s}}\left|x_{0}-z_{i}\right| \sum_{i=1, i \neq k}^{2^{s}}\left|x_{0}-z_{i}\right|^{-1}$. The interval I covers 2^{s} subintervals of $s+q$-th level, each of them contains one point z_{k}. Let us first consider the case $z_{k} \in I_{j_{s+q}, s+q}$, so z_{k} and x_{0} are on the same subinterval of $s+q$-th level. Here, $\prod_{i=1, i \neq k}^{2^{s}}\left|x_{0}-z_{i}\right| \leqslant \tau:=l_{j_{s+q-1}, s+q-1} l_{j_{s+q-2}, s+q-2}^{2} \cdots l_{j_{q}, q}^{2^{s-1}}$. By (a),

$$
\left|Q^{\prime}\left(z_{k}\right)\right|=\prod_{i=1, i \neq k}^{2^{s}}\left|z_{k}-z_{i}\right| \geqslant l_{j_{s+q-1}, s+q-1} h_{j_{s+q-2}, s+q-2}^{2} \cdots h_{j_{q}, q}^{2^{s-1}} \geqslant \sigma_{0}^{2^{s}-2} \tau
$$

and

$$
\begin{aligned}
\sum_{i=1, i \neq k}^{2^{s}}\left|x_{0}-z_{i}\right|^{-1} & \leqslant \sigma_{0}^{-1}\left[l_{j_{s+q-1}, s+q-1}^{-1}+2 l_{j_{s+q-2}, s+q-2}^{-1}+\cdots+2^{s-1} l_{j_{q}, q}^{-1}\right] \\
& <2^{s} \sigma_{0}^{-1} l_{j_{s+q-1}, s+q-1}^{-1}
\end{aligned}
$$

Therefore, $\left|L_{k}^{\prime}\left(x_{0}\right)\right| \leqslant 2^{s} \sigma_{0}^{1-2^{s}} l_{j_{s+q-1}, s+q-1}^{-1}$. By condition,

$$
\varepsilon^{m}<l_{j_{q-1}, q-1}^{m} \leqslant C(s, m) l_{j_{s+q-1}, s+q-1}
$$

which gives (13) for the first case.
Now assume that z_{k} and x_{0} belong to different subinterval of $s+q$-th level. Fix r such that $z_{r} \in I_{j_{s+q}, s+q}$ and the chain $z_{k} \in I_{i_{s+q}, s+q} \subset \cdots \subset I_{i_{q}, q}=I$. Here, by (a) and (b), $\left|Q^{\prime}\left(z_{k}\right)\right| \geqslant l_{i_{s+q-1}, s+q-1} h_{i_{s+q-2}, s+q-2}^{2} \cdots h_{i_{q}, q}^{s^{s-1}} \geqslant \sigma_{0}^{2^{s}-2} H_{s}^{-2^{s}+1} \tau$ with the same τ as above. To deal with the rest, we single the term $\left|x_{0}-z_{r}\right|$ out: $\prod_{i \neq k}\left|x_{0}-z_{i}\right| \sum_{i \neq k} \mid x_{0}-$ $\left.z_{i}\right|^{-1}=\prod_{i \neq k, i \neq r}\left|x_{0}-z_{i}\right| \cdot\left[1+\left|x_{0}-z_{r}\right| \sum_{i \neq k, i \neq r}\left|x_{0}-z_{i}\right|^{-1}\right]$. Now, $\prod_{i \neq k, i \neq r}\left|x_{0}-z_{i}\right|=$ $\left|x_{0}-z_{k}\right|^{-1} \prod_{i \neq r}\left|x_{0}-z_{i}\right| \leqslant\left|x_{0}-z_{k}\right|^{-1} \tau$, as before, and

$$
[\cdots] \leqslant 1+l_{j_{s+q}, s+q} \sigma_{0}^{-1}\left(l_{j_{s+q-1}, s+q-1}^{-1}+\cdots+2^{s-1} l_{j_{q}, q}^{-1}\right)<1+\left(2^{s}-1\right) / \sigma_{0}<2^{s} / \sigma_{0}
$$

Combining these inequalities yields $\left|L_{k}^{\prime}\left(x_{0}\right)\right| \leqslant\left(H_{s} / \sigma_{0}\right)^{2^{s}} 2^{s}\left|x_{0}-z_{k}\right|^{-1}$, which also gives (13) for the same reason as in the first case, since $\left|x_{0}-z_{k}\right|>h_{j_{s+q-1}, s+q-1} \geqslant$ $\sigma_{0} l_{j_{s+q-1}, s+q-1}$.

Proposition 2. Suppose $\left(\gamma_{s}\right)_{s=1}^{\infty}$ satisfies (3) and $m \geqslant 1$. If $K(\gamma) \in \operatorname{LMI}(m)$ then for each $s \in \mathbb{N}$ there exists $C=C(s, m)$ such that $\delta_{q}^{m} \leqslant C \cdot \delta_{s+q}$ for all $q \in \mathbb{N}$. For two model cases $\sum_{s=1}^{\infty} \gamma_{s}<\infty$ and $\gamma_{s}=\gamma_{1}$ for all s the inverse implication is valid as well.

Proof. Suppose $K(\gamma) \in \operatorname{LMI}(m)$. The values $i=j=1$ in Theorem 2 and applying both inequalities in (4) yield the desired conclusion.

In the case $\sum_{s=1}^{\infty} \gamma_{s}<\infty$, by (4), Theorem 2 and the given geometric condition imply that $K(\gamma) \in \operatorname{LMI}(m)$.

If $\gamma_{s}=\gamma_{1}$ for all s then the condition on $\left(\delta_{q}\right)$ is trivially valid for all $m \geqslant 1$. On the other hand, here the set $K(\gamma)$ is uniformly perfect. Then, by J. Lithner ([13, Prop. 5.1, p. 209]), $K \in \operatorname{LMI}(1)$, so $K \in \operatorname{LMI}(1)$ for all $m \geqslant 1$.

Example 7. (to Problem 2) Let us take $\gamma_{s}=\gamma_{1} \leqslant \frac{1}{32}$ for all s. Then, by Theorem 1 , the global version of Markov's inequality is valid only for $m \geqslant-\frac{\log \gamma_{1}}{\log 2}$, whereas the local form of Markov's inequality is valid for all $m \geqslant 1$.

The sets $K(\gamma)$ are not convenient to distinguish classes $\operatorname{LMI}(m)$ for different m. It is better to use for this aim geometrically symmetric Cantor-type sets. By means of a sequence $A=\left(A_{s}\right)_{s=1}^{\infty}$ we define the set $K(A)$, as in the beginning of this section, with $0<l_{1}<1 / 2$ and $\left|I_{j, s}\right|=l_{s}=l_{1}^{A_{s}}$ for all $j \leqslant 2^{s}$. The values $\left(A_{s}\right)_{s=1}^{\infty}$ with $\liminf _{s}\left(A_{s+1}-\right.$ $\left.A_{s}\right)>\log 2 / \log l_{1}^{-1}$ provide the condition (a).

Proposition 3. Suppose $K(A)$ satisfies the condition (a) and $m \geqslant 1$. Then

1) the set $K(A)$ is α-perfect if and only if there exists a constant C such that $A_{s+1}-\alpha A_{s} \leqslant C$ for all $s \in \mathbb{N}$;
2) $K(A) \in \operatorname{LMI}(m)$ if and only iffor each $s \in \mathbb{N}$ there exists $C=C(s, m)$ such that $A_{s+q} \leqslant m A_{q}+C$ for all $q \in \mathbb{N}$.

Proof. Indeed, the first statement follows from the definition of α-perfect sets. The second characterization is a corollary of Theorem 2.
V. Totik proved in [19, T. 3, p. 721] that $K(A)$ has Markov's property if and only if the sequence $\left(A_{s} / s\right)_{s=1}^{\infty}$ is bounded. As we mentioned above, the problem of characterization of exact classes $M I(m)$ is far from the solution. Here, by means of irregular sequences $\left(A_{s}\right)_{s=1}^{\infty}$, we distinguish classes $\operatorname{LMI}(m)$ and show that, in general, the local Markov inequality is not valid with the best local Markov exponent.

EXAMPLE 8. For any $m \geqslant 1$ there exists a set $K(A) \notin L M I(m)$ with $K(A) \in$ $\operatorname{LMI}(m+\varepsilon)$ for each $\varepsilon>0$.

Let us take $l_{1}=1 / 3$. Then $A_{q+1}=A_{q}+1$ means that $3 l_{q+1}=l_{q}$. Suppose $A_{q+1}=$ $A_{q}+1$ for $q \neq q_{n}$ and $A_{q_{n}+1}=m A_{q_{n}}+n$ for $n \in \mathbb{N}$. Here $\left(q_{n}\right)_{n=1}^{\infty}$ is a sequence of natural numbers with $q_{n+1}-q_{n} \uparrow \infty$ and $q_{n} / n \rightarrow \infty$ as $n \rightarrow \infty$.

Since $\sup _{q}\left(A_{q+1}-m A_{q}\right)=\infty$, we have $K(A) \notin L M I(m)$, by Proposition 3.
On the other hand, suppose $\varepsilon>0$ and $s \in \mathbb{N}$ are fixed. Let us show that $\sup _{q}\left[A_{q+s}-\right.$ $(m+\varepsilon) A_{q}$] is finite. Fix n_{0} such that $\varepsilon q_{n-1}>n$ and $q_{n+1}-q_{n}>s$ for $n>n_{0}$. Since $A_{q} \geqslant q$ for all q, we have $\varepsilon A_{q}>\varepsilon A_{q_{n-1}}>n$ for $q_{n-1}<q \leqslant q_{n}$. If $q>q_{n_{0}}$ then there is at most one value q_{n} between q and $q+s$. If $[q, q+s] \cap\left(q_{n}\right)_{n=1}^{\infty}=\emptyset$
then $A_{q+s}=A_{q}+s \leqslant(m+\varepsilon) A_{q}+C$ for $C=s$. Otherwise there exists q_{n} with $q \leqslant q_{n} \leqslant q+s$, let $q_{n}=q+k$ with $k \leqslant s$. Then $A_{q+k}=A_{q}+k, A_{q+k+1}=m\left(A_{q}+k\right)+n$ and $A_{q+s}=m\left(A_{q}+k\right)+n+s-1<(m+\varepsilon) A_{q}+C$ for $C=m s$. Therefore, the limit above does not exceed $C(s, m)=\max \left\{m s, \max _{q \leqslant q_{n_{0}}}\left[A_{q+s}-(m+\boldsymbol{\varepsilon}) A_{q}\right]\right\}$.

The last two examples are related to comparison of classes $\operatorname{MI}(m)$ and $\operatorname{LMI}(m)$.
Example 9. Let $A_{q}=q \cdot \log q$ for $q \geqslant 2$. Then $K(A) \in L M I(m)$ for each $m>1$, but $K(A)$ does not satisfy the Markov property.

Indeed, the global Markov inequality is not valid on $K(A)$ as the sequence $\left(A_{q} / q\right)_{s=1}^{\infty}$ is not bounded. On the other hand, given $m>1$ and $s \in \mathbb{N}$, let $q_{0}=\frac{s}{m-1}$. Then the value $C(s, m)=\max \left\{s \log 4, \max _{q \leqslant q_{0}}\left[A_{q+s}-m A_{q}\right]\right\}$ provides the inequality $A_{s+q} \leqslant$ $m A_{q}+C(s, m)$, as easy to check.

Example 10. For each m, as large as desired, there exist Markov's set $K=$ $K_{m}(A)$ with $K(A) \notin \operatorname{LMI}(m)$.

Given m, fix $l_{1}<2^{-m}$. Let $\delta_{0}=\log 2 / \log l_{1}^{-1}$, so $\delta_{0}<1 / m$. Fix δ with $\delta_{0}<\delta<$ $1 / m$. Suppose a sequence $\left(q_{n}\right)_{n=1}^{\infty}$ of natural numbers is given. Let $A_{q_{n}}=q_{n}$ for all n and $A_{q+1}=A_{q}+\delta$ for $q \neq q_{n}-1$. Thus, $A_{q}=q_{n}+\left(q-q_{n}\right) \delta$ for $q_{n} \leqslant q<q_{n+1}$. The condition $A_{q+1}=A_{q}+\delta$ means that $l_{q+1}=l_{q} l_{1}^{\delta}<l_{q} / 2$, so the set K is well-defined. Since K satisfies (a), we can use Proposition 3.

Here $A_{q} \leqslant q$ for all q. By Totik's characterization, K has Markov's property. But $K \notin \operatorname{LMI}(m)$ for a suitable choice of $\left(q_{n}\right)_{n=1}^{\infty}$. Otherwise, for $s=1$ there is a constant $C=C(1, m)$ such that $A_{q+1} \leqslant m A_{q}+C$ for all q. The value $q=q_{n+1}-1$ gives $q_{n+1} \leqslant m\left[q_{n}+\left(q_{n+1}-1-q_{n}\right) \cdot \delta\right]+C$, which is a contradiction for large n in the case of fast growing sequence $\left(q_{n}\right)_{n=1}^{\infty}$, for example $q_{n}=2^{n^{2}}$.

The set K above belongs to $\operatorname{LMI}\left(m_{1}\right)$ with $m_{1}=1 / \delta$. In more general, if $K(A) \in$ $M I$ then $K(A) \in L M I(m)$ with $m=C_{0} \log l_{1}^{-1} / \log 2$, where $C_{0}=\sup _{q} A_{q} / q$. Indeed, $l_{q}=l_{1}^{A_{q}}<2^{-q}$, so $A_{q}>q \cdot \log 2 / \log l_{1}^{-1}$ for all q. Therefore, $A_{s+q} \leqslant C_{0}(s+q)<$ $m A_{q}+C_{0} s$.

REFERENCES

[1] M. Altun and A. Goncharov, A local version of the Pawtucki-Pleśniak extension operator, J. Approx. Theory, 132 (2005), 34-41.
[2] M. Baran and W. Pleśniak, Markov's exponent of compact sets in \mathbb{C}^{n}, Proc. Amer. Math. Soc., 123 (1995), 2785-2791.
[3] M. Baran, L. BiaŁas-Cież and B. Milówka, On the best exponent in Markov inequality, Potential Anal., 38 (2013), 635-651.
[4] L. BiaŁAS and A. Volberg, Markov's property of the Cantor ternary set, Studia Math., 104 (1993), 259-268
[5] L. Bos and P. Milman, Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains, Geom. Funct. Anal., 5 (6), (1995), 853-923
[6] L. Carleson and T. Gamelin, Complex dynamics. Universitext: Tracts in Mathematics, SpringerVerlag, New York, 1993.
[7] L. Frerick, E. JordÁ and J. Wengenroth, Tame linear extension operators for smooth Whitney functions, J. Funct. Anal., 261 (2011), 591-603.
[8] A. Goncharov, A compact set without Markov's property but with an extension operator for C^{∞} functions, Studia Math., 119 (1996), 27-35.
[9] A. Goncharov, Perfect sets of finite class without the extension property, Studia Math., 126 (1997), 161-170.
[10] A. Goncharov, Weakly Equilibrium Cantor-type sets, to appear Potential Analysis 40 (2014), 143161.
[11] A. Jonsson and H. Wallin, Function spaces on subsets of \mathbb{R}^{n}, Math. Rep. 2, 1984.
[12] A. Jonsson, Markov's inequality and zeros of orthogonal polynomials on fractal sets, J. Approx. Theory, 78 (1994), 87-97.
[13] J. Lithner, Comparing two versions of Markov's inequality on compact sets, J. Approx. Theory, 77 (1994), 202-211.
[14] W. PawŁucki and W. PleŚniak, Extension of C^{∞} functions from sets with polynomial cusps, Studia Math., 88 (1988), 279-287.
[15] W. PLEŚNIAK, Markov's inequality and the existence of an extension operator for C^{∞} functions, J. Approx. Theory, 61 (1990), 106-117.
[16] T. RANSFORD, Potential theory in the complex plane, Cambridge University Press, 1995.
[17] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Springer-Verlag, 1997.
[18] M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu $\varepsilon(K)$ für kompakte Teilmenge K von \mathbb{R}, Arch. Math., 40 (1983), 73-81.
[19] V. Totik, Markoff constants for Cantor sets, Acta Sci. Math. (Szeged), 60 (1995), 715-734.

[^0]: Mathematics subject classification (2010): 41A17, 41A44.
 Keywords and phrases: Global and local Markov's inequalities, Markov's exponents.

